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Abstract 

This paper presents an improved approach for the numerical evaluation of domain 

integrals that appear in the solution of transient heat conduction problems when using 

a time-dependent boundary integral equation method. An implementation of this 

method requires the accurate evaluation of the domain integrals. As the time step 

value is very small, the integrand in the domain integral is close to singular, thus 

rendering accurate evaluation of the integral difficult. First a closest point is 

introduced when the source point is close to, but not on the cell in the present method. 

Then a coordinate transformation coupled with a cell subdivision technique is 

proposed considering the position of the source point or the closest point and the 

relations between the size of the cell and the time step value. With the new method, 

accurate evaluation of domain integrals can be obtained. Numerical examples have 

demonstrated the accuracy and efficiency of the proposed method. 

Keywords: domain integrals; cell subdivision; transient heat conduction; boundary 

element method. 

1. Introduction 



The boundary element method (BEM) [1-13] is an efficient tool for the analysis of the 

transient heat conduction problem. The pseudo-initial condition method is a boundary 

integral equation formulation based on the time-dependent fundamental solution. 

When using this method for the transient heat conduction problem, the temperature 

computed in the previous step is considered as the initial condition in current step. 

Therefore, the domain integrals of this pseudo-initial condition are required in the 

pseudo-initial condition method. The integrand in the domain integral is a regular 

function, but as the time step approaches to zero, it is close to singular [1]. When 

small time step is used, a straightforward computation using Gaussian quadrature can 

produce large errors, and thus lead to instability of the analysis as reported in [14-17]. 

Thus, accurate numerical evaluation of the domain integral is of crucial importance 

for the successful implementation of the pseudo-initial condition method. 

Various methods have been proposed to cope with these integrals. Gao [18-20] 

presented a radial integration method which converted the domain integrals into 

equivalent boundary integrals. Wrobel et al [21] proposed a semi-analytical 

integration method based on polar coordinates. But this method is mainly applied to 

the two-dimensional problems. Recently, the present authors [22] developed a method 

for three-dimensional problems. But the case that the source point locates outside the 

cell is not considered in this method. 

Though the source point is not on the cell, the domain integrals can’t be evaluated 

accurately and efficiently by standard Gaussian quadrature when the time step value is 

small. In present paper, firstly a closest point is introduced when the source point is 

close to the cell. It is very convenient to implement the coordinate transformation and 

the cell subdivision technique by using the closest point instead of source point when 

the source point locates outside the cell. Then, a coordinate transformation denoted as 

 , ,    transformation is proposed. The transformation is an extension of Zhang’s 

[23]  ,   transformation. With the transformation, the integrand in the domain 

integral becomes smoother. Thus, the computational accuracy can be improved. 

Finally, we presented the cell subdivision technique. The integrand in the domain 



integral varies dramatically around the source point or closest point when the time 

step is small. We subdivided the volume cell into the pyramidal and hexahedral 

patches considering the position of the source point or the closest point and the 

relations between the size of the cell and the time step value. With the subdivision 

technique, more integration points are shifted towards the source point or the closest 

point, and thus more accurate results can be obtained. Through introducing a closest 

point, we can evaluate the domain integrals in a uniform method no matter whether 

the source point locates on the cell or not. Numerical results demonstrate the accuracy 

and efficiency of our method. 

The outline of the rest of this paper is as follows. Section 2 introduces the boundary 

integral equation and the domain integral. And then the concept of closest point, 

 , ,    transformation and the cell subdivision technique are presented in Section 3. 

After that, several numerical examples are given in Section 4. Finally, the conclusion 

is provided in Section 5. 

2. General description 

2.1 The boundary integral equation 

In this section, we discuss BEM solutions for the three-dimensional diffusion equation 
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The boundary integral equation for transient heat conduction in an isotropic, 

homogeneous medium Ω bounded by Γ is as follows: 
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where y  and x  are the source point and the field point, respectively. ( )c y  is a 

function of the solid angle of the boundary at point y . k  denotes the diffusion 

coefficient. 0t  and Ft  stand for the initial time and the end time of one step, 

respectively. t  represents the time between 0t  and Ft . *u  and *q  are the 

time-dependent fundamental solution and its derivative with respect to the unit 



outward normal at the boundary. 0u  is the initial temperature. 

The time-dependent fundamental solution *u  is given by: 
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where r represents the distance between the source point and the field point.   is the 

time step, as follows: 

0Ft t                               (4) 

 

Fig. 1. Variation of the function u* with r for 0.001  . 

 

Fig. 2. Variation of function u* with r for 0.0001  . 
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2.2 The domain integral 

The domain integral involved in Eq. (2) can be written as: 
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The initial temperature 0 0( , )u tx  is a regular function. As the time step approaches 

zero, the time-dependent fundamental solution *u  becomes less and less smooth, its 

limit being a Dirac delta function [1]. When the source point locates outside the cell, 

domain integrals can also not be calculated accurately by the standard Gaussian 

quadrature using small time step. k denotes the diffusion coefficient and is assumed to 

be 1 in Fig. 1 and Fig. 2. R represents the minimum distance from the source point to 

the cell. And r represents the distance between the source point and the field point. It 

can be seen that steep slopes produced by the function *u  require more Gauss points 

to evaluate more accurately the integral under consideration. 

3. New method for evaluating the domain integrals 

 

Fig. 3. Several typical position of the closest point 

3.1 The closest point 

In this section, we first introduce the concept of the closest point. From previous 

analysis, it can be obtained that when the time step value is small, a straightforward 

application of Gaussian quadrature can produce large errors even the source point is 

not on the cell. The method proposed in the paper [22] is efficient for evaluating the 

Source point 

 

Closest point 

 



domain integrals, but it doesn’t consider the source point locating outside the cell. It is 

very inconvenient to implement the coordinate transformation and the cell subdivision 

technique when the source point is not on the cell. Therefore, a closest point is 

introduced. For the sake of simplicity, the closest point is obtained according to the 

minimum distance in the local coordinate system. Fig. 3 shows several typical 

position of the closest point. 

3.2 The  , ,    transformation 

The  , ,    transformation is used in the pyramidal patch as shown in Fig. 4. 

 0 0 0, ,x y z  is the source point or the closest point.  1 1 1, ,x y z ,  2 2 2, ,x y z , 

 3 3 3, ,x y z  and  4 4 4, ,x y z  are the node coordinates of the cell. 

To construct the  , ,    coordinate system, the following mapping is used: 
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Combining Eqs. (6a)-(6b), the expression for obtaining coordinates  , ,x y z  can be 

written as: 
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The Jacobian of the transformation from the  , ,x y z  system to the  , ,    

system is 
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With the  , ,    transformation, the variations of the integrand become smoother. 

Thus, the computational accuracy of the domain integrals can be improved. 

 

Fig. 4. The  , ,    coordinate transformation. 

3.3 The cell subdivision technique 

To further improve the computational accuracy of the domain integrals, a cell 

subdivision technique is proposed in this part. As shown in Fig. 1 and Fig. 2, a steep 

slope occurs in the integrand near the closest point as the time step value is small. 

Thus, more integration points should be shifted towards the closest point in order to 

calculate more accurately the integral under consideration. The detailed analysis is as 

follows. 

Firstly we see the following probability density function of normal distribution. 
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From Eq. (9), it can be noted that the form of the probability density function is 

almost like that of the time-dependent fundamental solution *u . As all we know, the 

integral value of Eq. (10) mainly concentrates in the interval  3 ,3  . This also 

applies similarly to the evaluation of the domain integral for the time-dependent 
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fundamental solution. Then a length parameter k   is introduced, and k  is 

similar to   in the probability density function. The length parameter k   is the 

real distance in the global coordinate system, not in the local coordinate system. 

Through introducing the closest point, the domain integrals can be evaluated in a 

uniform method no matter whether the source point is on the cell or not. The cell 

subdivision technique is presented as follows: 

 Firstly, a cube region with the length of 2 k   is constructed to well cover the 

source point or the closest point on the integration cell. If the cube region beyond 

the boundary of the cell, taking that as the boundary of the cube region. 

 Secondly, sub-pyramids are created in cube region considering the position of the 

source point or the closest point and sub-hexahedrons are constructed in the 

remaining regions of the cell. 

Fig.5 shows the subdivision of hexahedron cell when the source point or the closest 

point is on the vertex of the cell. The advantage of the proposed cell subdivision 

technique is that more integration points are shifted towards the source point or the 

closest point. With the cell subdivision technique coupled with the  , ,    

transformation, the domain integrals can be accurately calculated. 

 

Fig. 5. The subdivision of hexahedron cell. 

4. Numerical examples 

To verify the accuracy and efficiency of our method, several examples are presented 

in this section. The domain integrals of the following form are considered: 

 

2

1.5

1
exp

44

r
I d

kk


 

 
  

 
                   (11) 

y yy 

k 

k 



The coefficient k  in Eq. (11) is assumed to be 1 and the dimensionless parameter   

is 8. The  , ,    transformation with 15×15×15 Gaussian points is used on the 

sub-pyramids and 5×5×5 point Gaussian quadrature is used on the sub-hexahedrons. 

The numerical values obtained by our method will be compared to ‘exact’ values in 

terms of the relative error defined by 

Relative Error numerical exact

exact

I I

I
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where numericalI  and exactI  are the numerical and ‘exact’ values of the integral under 

consideration, respectively. The accuracy of exactI  is to 10-12. 

4.1 Example 1 

In the first example, the domain integral of Eq. (11) is evaluated over a hexahedron 

cell with the node coordinates of (-1, -1, -1), (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, 1), 

(1, -1, 1), (1, 1, 1), (-1, 1, 1) as shown in Fig.6. The coordinate of the source point is 

set at (1.01, 0, 0). The relative errors of various methods with different time steps are 

compared in Table 1.   represents the time step value. 5×5×5 means straightforward 

Gaussian quadrature with 5×5×5 Gauss points. The  , ,    transformation 

combined with the cell subdivision technique is denoted as  , ,   . 

 

Fig. 6. The node coordinates of hexahedron cell. 

Table 1 

Relative errors for integral I on hexahedron cell with the node coordinates of (-1, -1, 

-1), (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, 1), (1, 1, 1), (-1, 1, 1). Errors less 

 1, 1, 1    1, 1, 1 

 1,1, 1 1,1, 1 

 1, 1,1   1, 1,1

 1,1,1 1,1,1

x

y
z



than 10-12 are indicated with a ‘-’. 

  0.1 0.01 0.001 0.0001 0.00001 

5×5×5 2.02E-03 1.82E+00 7.94E+00 1.00E+00 1.00E+00 

10×10×10 3.01E-09 5.54E-02 1.00E+00 1.00E+00 1.00E+00 

15×15×15 - 5.77E-04 2.27E+00 3.42E+01 6.10E-01 

30×30×30 - - 9.54E-02 1.00E+00 1.00E+00 

 , ,    - 1.09E-08 2.95E-08 3.01E-08 3.15E-08 

It can be seen from Table 1 that when the time step value is small, a straightforward 

computation using Gaussian quadrature can produce large errors even with 30×30×30 

Gauss points, while accurate and stable results can be obtained by our method. As 

illustrated in this example, it is necessary to consider the problem that the source point 

locates outside the cell when small time step is used. And the proposed method is 

efficient for solving this problem by introducing a closest point. 

4.2 Example 2 

In this example, the integration cell is the same as described in example 1. The source 

point moves close to the cell. The coordinates in Table 2 and Table 3 are the position 

of the source point. The relative errors in Table 2 and Table 3 are obtained by the 

proposed method and a straightforward Gaussian quadrature with 20×20×20 Gauss 

points, respectively. 

Table 2 

Relative errors for integral I by the proposed method on hexahedron cell with the 

node coordinates of (-1, -1, -1), (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, 1), 

(1, 1, 1), (-1, 1, 1). 

  0.1 0.01 0.001 0.0001 

(1.1, 0, 0) - 1.03E-08 2.65E-08 1.31E-08 

(1.05, 0, 0) - 1.13E-08 2.77E-08 3.13E-08 

(1.01, 0, 0) - 1.09E-08 2.95E-08 3.01E-08 

(1.005, 0, 0) - 1.08E-08 3.35E-08 3.12E-08 

(1.001, 0, 0) - 1.07E-08 3.87E-08 3.97E-08 



Table 3 

Relative errors for integral I by a straightforward Gaussian quadrature with 20×20×20 

Gauss points on hexahedron cell with the node coordinates of (-1, -1, -1), (1, -1, -1), 

(1, 1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, 1), (1, 1, 1), (-1, 1, 1). 

  0.1 0.01 0.001 0.0001 

(1.1, 0, 0) - 1.70E-06 6.03E-01 1.00E+00 

(1.05, 0, 0) - 1.70E-06 6.03E-01 1.00E+00 

(1.01, 0, 0) - 1.70E-06 6.03E-01 1.00E+00 

(1.005, 0, 0) - 1.70E-06 6.03E-01 1.00E+00 

(1.001, 0, 0) - 1.70E-06 6.03E-01 1.00E+00 

Table 2 and Table 3 show that the relative errors don’t change for a certain time step 

value when the source point moves close to the cell in the two methods. As the time 

step decrease, a straightforward application of Gaussian quadrature would produce 

large errors no matter whether the source point locates close to the cell or not. But 

with our proposed method, good results can be obtained with a wide range of time 

steps. 

4.3 Example 3 

A more general example is presented in this part. The domain integrals of the 

following form are considered: 
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where N is the shape function of the hexahedron cell. 

Different locations of the source points are considered. The integration cell is shown 

in Fig. 6. The relative errors for different locations of the source points and time steps 

are compared in Table 4. 

Table 4 

Relative errors for integral I1 by the proposed method on hexahedron cell with the 

node coordinates of (-1, -1, -1), (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, 1), 

(1, 1, 1), (-1, 1, 1). Errors less than 10-12 are indicated with a ‘-’. 



  0.1 0.01 0.001 0.0001 

(1.01, 1.02, 1.03) 1.27E-11 5.15E-09 7.90E-09 3.16E-09 

(1.01, 0.0, 1.03) 2.02E-12 7.80E-10 1.86E-08 1.41E-08 

(1.01, 0.1, 0.2) - 5.26E-09 2.67E-08 3.02E-08 

(0.0, -1.04, -1.05) 7.22E-12 1.58E-08 1.41E-08 7.78E-08 

(0.0, 0.0, -1.05) - 1.19E-08 2.03E-08 1.95E-08 

From Table 4 it can be seen that the relative errors almost don’t change with position 

of the source point when adding the shape function into the domain integral. These 

illustrate the proposed method is a robust algorithm for evaluating the domain 

integrals. 

4.4 Example 4 

A real transient heat conduction problem is considered in this example. The cube is 

heated on the top face and other faces are insulated as shown in Fig.7. The density, 

heat conductivity and heat capacity are 320 /kg m , 02 /( . )kJ m h C  and 00.8 /( . )kJ kg C , 

respectively. The length of the cube is 1m. A uniform temperature 0100 C  is imposed 

suddenly on the top face of the cube. The initial temperature of the cube is 00 C . In 

this application, the variation history of the temperature from 0h to 9.6h at the bottom 

face is concerned. 96 boundary linear quadrilateral elements with 150 nodes and 64 

volume linear hexahedral cells with 125 nodes are used. To illustrate the accuracy of 

the proposed method, numerical results are compared with the existing analytical 

solution to the considered problem as shown in Fig. 8. ‘Regular Gaussian 0.1’ means 

that the domain integrals are evaluated using the Gaussian quadrature directly and the 

time step is 0.1h. ‘Proposed Solution 0.1’ represents that  , ,    transformation 

combined with the cell subdivision technique is used for calculating the integrals and 

the time step is 0.1h. 

Fig. 8 shows that the ‘Regular Gaussian’ solutions start to become unstable when the 

time step is less than 0.1h. With our method, the domain integrals can be evaluated 

accurately and thus good results are obtained for a wide range of time steps.  



 

Fig. 7. The cube is heated on the top face. 

 

Fig. 8. The temperature at the bottom face. 

5. Conclusion 

An improved approach for the numerical evaluation of domain integrals that appear in 

the BEM solution for transient heat conduction problems is presented in this paper. 

With the proposed method, the domain integrals can be evaluated accurately and 

efficiently no matter whether the source point locates on the integration cell or not. 

Firstly through introducing a closest point, the numerical evaluation of the domain 

integrals can be implemented by a uniform method. Then using the  , ,    

transformation and the cell subdivision technique, more Gauss points are shifted 

towards the source point or the closest point, and thus more accurate results are 

obtained. The accurate numerical evaluation of the domain integrals can improve the 

stability of the pseudo-initial condition method for the transient heat conduction when 

0100 C



small time step is used. Numerical examples are presented and results demonstrate the 

accuracy and efficiency of our method. 
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